Plasticity of surface structures and β(2)-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure.
نویسندگان
چکیده
BACKGROUND Cardiomyocyte surface morphology and T-tubular structure are significantly disrupted in chronic heart failure, with important functional sequelae, including redistribution of sarcolemmal β(2)-adrenergic receptors (β(2)AR) and localized secondary messenger signaling. Plasticity of these changes in the reverse remodeled failing ventricle is unknown. We used AAV9.SERCA2a gene therapy to rescue failing rat hearts and measured z-groove index, T-tubule density, and compartmentalized β(2)AR-mediated cAMP signals, using a combined nanoscale scanning ion conductance microscopy-Förster resonance energy transfer technique. METHODS AND RESULTS Cardiomyocyte surface morphology, quantified by z-groove index and T-tubule density, was normalized in reverse-remodeled hearts after SERCA2a gene therapy. Recovery of sarcolemmal microstructure correlated with functional β(2)AR redistribution back into the z-groove and T-tubular network, whereas minimal cAMP responses were initiated after local β(2)AR stimulation of crest membrane, as observed in failing cardiomyocytes. Improvement of β(2)AR localization was associated with recovery of βAR-stimulated contractile responses in rescued cardiomyocytes. Retubulation was associated with reduced spatial heterogeneity of electrically stimulated calcium transients and recovery of myocardial BIN-1 and TCAP protein expression but not junctophilin-2. CONCLUSIONS In summary, abnormalities of sarcolemmal structure in heart failure show plasticity with reappearance of z-grooves and T-tubules in reverse-remodeled hearts. Recovery of surface topology is necessary for normalization of β(2)AR location and signaling responses.
منابع مشابه
Plasticity of Surface Structures and 2-Adrenergic Receptor Localization in Failing Ventricular Cardiomyocytes During Recovery from Heart Failure Lyon et al: Nanoscale Reverse Remodeling in Heart Failure
Background—Cardiomyocyte surface morphology and T-tubular structure are significantly disrupted in chronic heart failure with important functional sequelae, including redistribution of sarcolemmal beta2adrenergic receptors ( 2AR) and localized secondary messenger signaling. Plasticity of these changes in the reverse remodeled failing ventricle is unknown. We used AAV9.SERCA2a gene therapy to re...
متن کاملS100A1 in human heart failure: lack of recovery following left ventricular assist device support.
BACKGROUND We hypothesized that S100A1 is regulated during human hypertrophy and heart failure and that it may be implicated in remodeling after left ventricular assist device. S100A1 is decreased in animal and human heart failure, and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explor...
متن کاملβ-AR Blockers Suppresses ER Stress in Cardiac Hypertrophy and Heart Failure
BACKGROUND Long-term β-adrenergic receptor (β-AR) blockade reduces mortality in patients with heart failure. Chronic sympathetic hyperactivity in heart failure causes sustained β-AR activation, and this can deplete Ca(2+) in endoplasmic reticulum (ER) leading to ER stress and subsequent apoptosis. We tested the effect of β-AR blockers on ER stress pathway in experimental model of heart failure....
متن کاملArrhythmogenic remodeling of β2 versus β1 adrenergic signaling in the human failing heart.
BACKGROUND Arrhythmia is the major cause of death in patients with heart failure, for which β-adrenergic receptor blockers are a mainstay therapy. But the role of β-adrenergic signaling in electrophysiology and arrhythmias has never been studied in human ventricles. METHODS AND RESULTS We used optical imaging of action potentials and [Ca(2+)]i transients to compare the β1- and β2-adrenergic r...
متن کاملOrphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling
Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca(2+) ([Ca(2+)]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still uncl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Heart failure
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2012